22 research outputs found

    Leveraging Billions of Faces to Overcome Performance Barriers in Unconstrained Face Recognition

    Full text link
    We employ the face recognition technology developed in house at face.com to a well accepted benchmark and show that without any tuning we are able to considerably surpass state of the art results. Much of the improvement is concentrated in the high-valued performance point of zero false positive matches, where the obtained recall rate almost doubles the best reported result to date. We discuss the various components and innovations of our system that enable this significant performance gap. These components include extensive utilization of an accurate 3D reconstructed shape model dealing with challenges arising from pose and illumination. In addition, discriminative models based on billions of faces are used in order to overcome aging and facial expression as well as low light and overexposure. Finally, we identify a challenging set of identification queries that might provide useful focus for future research.Comment: 7 page

    Web-Scale Training for Face Identification

    Full text link
    Scaling machine learning methods to very large datasets has attracted considerable attention in recent years, thanks to easy access to ubiquitous sensing and data from the web. We study face recognition and show that three distinct properties have surprising effects on the transferability of deep convolutional networks (CNN): (1) The bottleneck of the network serves as an important transfer learning regularizer, and (2) in contrast to the common wisdom, performance saturation may exist in CNN's (as the number of training samples grows); we propose a solution for alleviating this by replacing the naive random subsampling of the training set with a bootstrapping process. Moreover, (3) we find a link between the representation norm and the ability to discriminate in a target domain, which sheds lights on how such networks represent faces. Based on these discoveries, we are able to improve face recognition accuracy on the widely used LFW benchmark, both in the verification (1:1) and identification (1:N) protocols, and directly compare, for the first time, with the state of the art Commercially-Off-The-Shelf system and show a sizable leap in performance

    Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues

    Full text link
    We explore the task of recognizing peoples' identities in photo albums in an unconstrained setting. To facilitate this, we introduce the new People In Photo Albums (PIPA) dataset, consisting of over 60000 instances of 2000 individuals collected from public Flickr photo albums. With only about half of the person images containing a frontal face, the recognition task is very challenging due to the large variations in pose, clothing, camera viewpoint, image resolution and illumination. We propose the Pose Invariant PErson Recognition (PIPER) method, which accumulates the cues of poselet-level person recognizers trained by deep convolutional networks to discount for the pose variations, combined with a face recognizer and a global recognizer. Experiments on three different settings confirm that in our unconstrained setup PIPER significantly improves on the performance of DeepFace, which is one of the best face recognizers as measured on the LFW dataset
    corecore